42,717 research outputs found

    F-15 composite engine access door

    Get PDF
    This paper presents a summary of the successfully concluded phase 1 of the two-phase Design and Manufacture of Advanced Thermoplastic Structures (DMATS) program. It addresses the design, manufacture, and validation testing of a thermoplastic F-15E forward engine access door and includes lessons learned during the concurrent product and process design development phases of the program

    Optimisation in ‘Self-modelling’ Complex Adaptive Systems

    No full text
    When a dynamical system with multiple point attractors is released from an arbitrary initial condition it will relax into a configuration that locally resolves the constraints or opposing forces between interdependent state variables. However, when there are many conflicting interdependencies between variables, finding a configuration that globally optimises these constraints by this method is unlikely, or may take many attempts. Here we show that a simple distributed mechanism can incrementally alter a dynamical system such that it finds lower energy configurations, more reliably and more quickly. Specifically, when Hebbian learning is applied to the connections of a simple dynamical system undergoing repeated relaxation, the system will develop an associative memory that amplifies a subset of its own attractor states. This modifies the dynamics of the system such that its ability to find configurations that minimise total system energy, and globally resolve conflicts between interdependent variables, is enhanced. Moreover, we show that the system is not merely ‘recalling’ low energy states that have been previously visited but ‘predicting’ their location by generalising over local attractor states that have already been visited. This ‘self-modelling’ framework, i.e. a system that augments its behaviour with an associative memory of its own attractors, helps us better-understand the conditions under which a simple locally-mediated mechanism of self-organisation can promote significantly enhanced global resolution of conflicts between the components of a complex adaptive system. We illustrate this process in random and modular network constraint problems equivalent to graph colouring and distributed task allocation problems

    Impacts of farming practice within organic farming systems on below-ground ecology and ecosystem function

    Get PDF
    Maintaining ecosystem function is a key issue for sustainable farming systems which contribute broadly to global ecosystem health. A focus simply on the diversity of belowground organisms is not sufficient and there is a need to consider the contribution of below-ground biological processes to the maintenance and enhancement of soil function and ecosystem services. A critical literature review on the impacts of land management practices on below-ground ecology and function shows that farm management practices can have a major impact. A particular challenge for organic farming systems is to explore to what extent reduced tillage can be adopted to the benefit of below-ground ecology without critically upsetting the whole farm management balance

    An analysis of prop-fan/airframe aerodynamic integration

    Get PDF
    An approach to aerodynamic integration of turboprops and airframes, with emphasis placed upon wing mounted installations is addressed. Potential flow analytical techniques were employed to study aerodynamic integration of the prop fan propulsion concept with advanced, subsonic, commercial transport airframes. Three basic configurations were defined and analyzed: wing mounted prop fan at a cruise Mach number of 0.8, wing mounted prop fan in a low speed configuration, and aft mounted prop fan at a cruise Mach number of 0.8

    Associative memory in gene regulation networks

    No full text
    The pattern of gene expression in the phenotype of an organism is determined in part by the dynamical attractors of the organism’s gene regulation network. Changes to the connections in this network over evolutionary time alter the adult gene expression pattern and hence the fitness of the organism. However, the evolution of structure in gene expression networks (potentially reflecting past selective environments) and its affordances and limitations with respect to enhancing evolvability is poorly understood in general. In this paper we model the evolution of a gene regulation network in a controlled scenario. We show that selected changes to connections in the regulation network make the currently selected gene expression pattern more robust to environmental variation. Moreover, such changes to connections are necessarily ‘Hebbian’ – ‘genes that fire together wire together’ – i.e. genes whose expression is selected for in the same selective environments become co-regulated. Accordingly, in a manner formally equivalent to well-understood learning behaviour in artificial neural networks, a gene expression network will therefore develop a generalised associative memory of past selected phenotypes. This theoretical framework helps us to better understand the relationship between homeostasis and evolvability (i.e. selection to reduce variability facilitates structured variability), and shows that, in principle, a gene regulation network has the potential to develop ‘recall’ capabilities normally reserved for cognitive systems

    Transformations in the Scale of Behaviour and the Global Optimisation of Constraints in Adaptive Networks

    No full text
    The natural energy minimisation behaviour of a dynamical system can be interpreted as a simple optimisation process, finding a locally optimal resolution of problem constraints. In human problem solving, high-dimensional problems are often made much easier by inferring a low-dimensional model of the system in which search is more effective. But this is an approach that seems to require top-down domain knowledge; not one amenable to the spontaneous energy minimisation behaviour of a natural dynamical system. However, in this paper we investigate the ability of distributed dynamical systems to improve their constraint resolution ability over time by self-organisation. We use a ‘self-modelling’ Hopfield network with a novel type of associative connection to illustrate how slowly changing relationships between system components can result in a transformation into a new system which is a low-dimensional caricature of the original system. The energy minimisation behaviour of this new system is significantly more effective at globally resolving the original system constraints. This model uses only very simple, and fully-distributed positive feedback mechanisms that are relevant to other ‘active linking’ and adaptive networks. We discuss how this neural network model helps us to understand transformations and emergent collective behaviour in various non-neural adaptive networks such as social, genetic and ecological networks

    Sublethal Behavioral and Physiological Effects of the Biomedical Bleeding Process on the American Horseshoe Crab, Limulus polyphemus

    Get PDF
    The hemolymph of the American horseshoe crab, Limulus polyphemus, is harvested from over 500,000 animals annually to produce Limulus amebocyte lysate (LAL), a medically important product used to detect pathogenic bacteria. Declining abundance of spawning Limulus females in heavily harvested regions suggests deleterious effects of this activity, and while mortality rates of the harvest process are known to be 10%–30%, sublethal behavioral and physiological effects are not known. In this study, we determined the impact of the harvest process on locomotion and hemocyanin levels of 28 female horseshoe crabs. While mortality rates after bleeding (18%) were similar to previous studies, we found significant decreases in the linear and angular velocity of freely moving animals, as well as changes in their activity levels and expression of circatidal behavioral rhythms. Further, we found reductions in hemocyanin levels, which may alter immune function and cuticle integrity. These previously unrecognized behavioral and physiological deficits suggest that the harvest of LAL may decrease female fitness, and thus may contribute to the current population decline

    Effects of composting manures and other organic wastes on soil processes and pest and disease interactions

    Get PDF
    Introduction Composts and manures are of major importance in providing fertility in organic farming systems, since synthetic fertilisers are prohibited. It is understood that composts have radically different nutrient release characteristics to those of uncomposted materials and manures, and it is believed that composting increases the beneficial effects of organic materials on soil health, soil quality, soil fertility and nutrient use efficiency. It has also been shown that some plant pests and diseases are suppressed through the application of composts and compost extracts to soils. There is considerable potential to use a wider range of feedstocks from on and off-farm sources and to improve the composting process and compost/manure application techniques. This review of scientific work to date was urgently required to help determine key research priorities to achieve this potential (Defra project OF0313). Project aims 1.To document the current standards, regulations and legislation relevant to recycling, compost/manure preparation and application and to review common UK practices relating to the preparation and application of uncomposted materials, manures, composts and compost extracts. 2. To review current scientific knowledge (from the literature) of the effects of different composting processes on chemical and biological parameters in the finished compost or compost extract. 3. To review (from the literature) the effects of uncomposted materials, manures and composts on soil health and quality, soil fertility and crop development and nutrition. 4. To review (from the literature) the effects of uncomposted materials, manures, composts and compost extracts on pest and disease incidence and severity in agricultural and horticultural crops. 5. To outline a proposed strategy for research which seeks to develop composting systems and compost/manure application protocols with a view to optimising soil fertility management and pest and disease control in organic agriculture and horticulture. Objective 1 - The current standards, regulations and legislation relevant to recycling, compost/manure preparation and application are documented in detail in the full report on Objective 1 (Appendix 2). Manures and uncomposted plant materials (e.g. green manures) are commonly used on UK organic farms. True composts (defined in the glossary, Appendix 1) are rarely prepared on UK organic farms, although there is increasing interest in their use, particularly on farms producing high value horticultural crops. An increasing number of companies are producing (or are interested in producing) composts suitable for use on organic farms as soil amendments or growing media. Objective 2 - The effects of different composting processes on chemical and biological parameters in the finished compost or compost extract are reviewed in detail in the full report on Objective 2 (Appendix 3). A short version of this review appears on pages 7-10 of this report. Objective 3 - The effects of uncomposted materials, manures and composts on soil health and quality, soil fertility and crop development and nutrition are reviewed in detail in the full report on Objective 3 (Appendix 4). A short version of this review appears on pages 10-13 of this report. Objective 4 - The effects of uncomposted materials, manures, composts and compost extracts on pest and disease incidence and severity in agricultural and horticultural crops are reviewed in detail in the full report on Objective 4 (Appendix 5). A short version of this review appears on pages 13-17 of this report. Objective 5 - A proposed strategy for research was outlined which seeks to develop composting systems and compost/manure application protocols with a view to optimising soil fertility management and pest/disease control in organic agriculture/horticulture Organic farming systems are by nature holistic. In other words, they function as a whole and all aspects of the system are interdependent on many other aspects of the system. It is essential therefore that research which is carried out to optimise the use of uncomposted plant residues, composts, manures and compost extracts is interdisciplinary; that is it must be carried out with reference to the organic farming system as a whole and not just a single aspect of it. Technology transfer and knowledge transfer are key elements to the proposed strategy for research. Seminars and conferences, farm walks, demonstration farms and a wide range of publishing formats must be used to ensure that end users have full access to the results of research carried out in the UK and abroad. The amount of information which is available for dissemination to those who wish to make or use composts will naturally depend on the amount of relevant research and development work which is going on in the UK, Europe and worldwide

    Effect of Reynolds number on stability characteristics of a cruciform wing-body

    Get PDF
    An experimental investigation was conducted to determine the effect of Reynolds number on the stability characteristics of a body with cruciform wings at large angles of attack. Pressure distributions and force and moment data (axial force not measured) are presented for Mach 1.60 and 2.70, Reynolds numbers based on body diameter from approximately 130,000 to 2,800,000, and angles of attack from 0 deg to 50 deg. In general, the data show only small effects of Reynolds number throughout the range of test condition. Also discussed are force balance and pressure data that suggest a direct relationship between wind choking and the onset of a nonlinear stability variaton with angle of attack
    corecore